Home >> PROJECTS >> SANUM – molecular sensors for traceability and quality control
Logo progetto SANUM

Molecular sensors for traceability and quality control

Towards "functional foods": molecular sensors

With the SANUM project we investigated the use of molecular sensors for traceability and quality.

SANUM Project

Nutrition-related health problems such as food allergies, obesity, diabetes and cardiovascular disease have grown in epidemic proportions. Furthermore, they are also causing a heavy toll on our society and our health systems. For this reason, the European Commission has launched a challenge to ICT companies, the Horizon Prize, for the development of a cheap and non-invasive mobile solution that would allow users to measure and analyze food directly (https://ec.europa.eu/info/research-and-innovation/funding/funding-opportunities/prizes/horizon-prizes/food-scanner_en). Up for grabs: € 1 Million ! Three companies have shared this award.

We wondered why not try to use these new technologies in the Nurideas R&D? and integrate these molecular sensors into the traceability and quality control we were developing for micro agribusiness companies?

In 2017 we presented a research and development project in response to the call “Filiera Biomed” of Sardinia Research (POR FESR 2014-2020) to try to answer this question.

Scientific path

The SANUM project objective was the study of new functions – relating to food traceability and personalized nutrition – to be integrated into the ecosystem of products and services developed by Nurideas And thus increase the level of innovation of our company pipeline.

The project included a scientific validation process for the sensors divided into four phases:

  1. collection of an adequate number of food samples from dairy farms;
  2. analysis of the samples at the NMR and GC-MS spectrometry laboratories of the University of Cagliari;
  3. analysis of the same samples through two molecular sensors currently available on the market;
  4. validation of the results obtained.

We have tested 2 of the 3 sensors that were winners in 2016 of the European Horizon Price Food scanner award. The aim of the project was twofold: on the one hand to analyze the sensitivity level of the sensors and validate how they function. On the other to understand if they could be used by micro and small agri-food businesses.

Sensors

The sensors used in the project are: SCiO (www.consumerphysics.com) and Tellspec (www.tellspec.com).
Sensors communicate with the user’s smartphone via the Bluetooth connection.

SCiO scanner
SCiO scanner
Tellspec scanner
Tellspec scanner

Both sensors use NIR (Near-Infrared Spectroscopy) technology but operate in different wavelength ranges (SCiO: 750-1040 nm; Tellspec: 900-1700 nm).

From a technical point of view, the sensors consist of a light source that irradiates the food sample and an optical sensor (spectrometer) that converges the rays of light reflected by the sample, returning a spectrum that is used for the final analysis analysis of the sample.

Sampling

The SANUM project involved three dairy farms and a multifunctional farm located in different parts of the territory. In the period between December 2017 and July 2018, we analyzed various types of milk (goat, sheep and mixed sheep-goat) and cheese.
In all, we analyzed 67 samples corresponding to 16 different products and we obtained a total of 2319 spectra. These spectra can be considered as a fingerprint of each product.

Sanum: products

To manage all this data, visualize and track our experiments we have created a database (ScanDB). And then NurScan, a software with a web interface to easily visualize the data.

Analysis

On the collected samples we have run data-mining analyses. To do that we used the tools offered by the “TheLab” application on the Consumer Physics website (developer of the SCiO sensor).

TheLab allows you to perform a PCA analysis (Principal Component Analysis) on the spectra and view the results in graphical form.

The figure shows an example of a PCA made on a group of 4 different cheeses, that we can visually identify without problem.

PCA 4 cheese

In PCA analyses we look for “clusters” or clouds of data that have the same properties. We made this kind of analysis on all the samples. It has allowed us to filter all the anomalous spectra (outliers). Therefore we could proceed and clean up the data for the subsequent creation of the models.

Models

A data-mining model is created by applying an algorithm to the data: it is a set of data, statistics and schema that can then be applied to new data to generate predictions and inferences about relationships. The number of samples and the data collected only allowed us to create some classification models to test the validity of the approach. Using the model generation tool in “TheLab” we created a classification model using the same 4 cheeses shown in the PCA. In the figure we see the expected performance of the classification model (the so-called “confusion matrix”).

Model 4 cheese

However, to develop a more precise model, we will need to analyze a larger number of samples for each type of cheese.

The SANUM project (2017-2018) was funded by the European Union with the support of the Autonomous Region of Sardinia and Sardegna Ricerche (POR FESR Sardinia 2014-2020).

Logo Sardegna Ricerche
La Regione Autonoma della Sardegna
EU flag
Logo del POR FESR 2014-2020 Sardegna
Menu